Stochastic programming for off-line adaptive radiotherapy
نویسندگان
چکیده
In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimizationbased treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause significant differences between the dose in the “optimized” plan and the actual dose delivered to a patient. An IMRT treatment plan is delivered as a series of small daily dosages, or fractions, over a period of time (typically 35 days). It has recently become technically possible to measure variations in patient setup and the delivered doses after each fraction. We develop an optimization framework, which exploits the dynamic nature of radiotherapy and information gathering by adapting the treatment plan in response to temporal variations measured during the treatment course of a individual patient. The resulting (suboptimal) control policies, which re-optimize before each fraction, include two approximate dynamic programming schemes: certainty equivalent control (CEC) and open-loop feedback control (OLFC). Computational experiments show that resulting individualized adaptive radiotherapy plans promise to provide a considerable improvement compared to non-adaptive treatment plans, while remaining computationally feasible to implement.
منابع مشابه
Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملA novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty
This paper investigates the integration of strategic and tactical decisions in the supply chain network design (SCND) considering assembly line balancing (ALB) under demand uncertainty. Due to the decentralized decisions, a novel bi-level stochastic programming (BLSP) model has been developed in which SCND problem has been considered in the upper-level model, while the lower-level model contain...
متن کاملDecision making in forest management with consideration of stochastic prices
The optimal harvesting policy is calculated as a function of the entering stock, the price state, the harvesting cost, and the rate of interest in the capital market. In order to determine the optimal harvest schedule, the growth function and stumpage price process are estimated for the Swedish mixed species forests. The stumpage price is assumed to follow a stochastic Markov process. A stoch...
متن کاملTwo-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect
This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...
متن کاملReal-time HEV energy management strategies
Hybrid electric vehicles require an adequate energy management strategy in order to actually optimize their consumption. Many real-time controls were recently proposed in literature, but as each study is performed in a specific context, it is difficult to compare their efficiencies. The present paper proposes a comparison between 3 recent promising real-time strategies: adaptive equivalent cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals OR
دوره 196 شماره
صفحات -
تاریخ انتشار 2012